Historical data function
This section describes how to use the library once the user has logged in. Details are provided at the end of this chapter.
5. Get available (historical) data
How to use the library after logging in. Detailed examples are provided at the end of this chapter.
data = client.Fetch_Trading_Data(
realtime = False,
tickers = tickers,
fields = ['open', 'high', 'low', 'close', 'volume', 'bu','sd'],
adjusted = True,
by = by,
period = 100
).get_data()
Parameters: (Note: 'period' only exists when 'from_date' is not passed, and vice versa). You must choose one of these two methods of passing data.
realtime
Whether to subscribe to continuously updated data or only call historical data up to the latest point (True for yes, False for no).
bool
Yes
tickers
All caps stock codes.
list
Yes
fields
The data fields to retrieve: ['open','high','low','close','volume','bu','sd']
corresponding to Open, High, Low, Close, Volume, BU, SD.
list
Yes
adjusted
Adjusted or unadjusted price (True for adjusted, False for unadjusted)
bool
True
No
by
Time unit (1m, 5m, 15m, 30m, 1h, 2h, 4h, 1d)
str
1M
No
period
Number of most recent historical candles to retrieve
int
No
from_date
Earliest timestamp for data retrieval.
str
datetime
to_date
Latest timestamp for data retrieval.
str
datetime
datetime.now()
No
The data retrieval class is Fetch_Trading_Data, with the following two methods:
get_data()
Get the latest data if realtime = False
, or start the connection and receive data with realtime = True
.
### pseudocode
event = client.Fetch_Trading_Data(
realtime=False,
tickers=tickers,
fields=['open', 'high', 'low', 'close', 'volume', 'bu','sd'],
adjusted=True,
by='1m',
from_date='2024-11-28 09:00'
)
data=event.get_data()
print(data)
Data has the following attributes:
ticker
Code name
str
timestamp
Trading time
int
open
Open price
float
low
Lowest price
float
high
Highest price
float
close
Close price
float
volume
Trading volume
int
bu
Active buy volume
int
sd
Active sell volume
int
fb
Foreign buy value
int
fs
Foreign sell value
int
fn
Net buy/ sell value
int
Example
import pandas as pd
import FiinQuantX as fq
from FiinQuantX import BarDataUpdate
username = 'REPLACE_WITH_YOUR_USER_NAME'
password = 'REPLACE_WITH_YOUR_PASS_WORD'
client = fq.FiinSession(username=username, password=password).login()
tickers = ['HPG', 'SSI', 'VN30F1M', 'UPCOMINDEX']
data = client.Fetch_Trading_Data(
realtime = False,
tickers = tickers,
fields = ['open', 'high', 'low', 'close', 'volume', 'bu', 'sd', 'fb', 'fs', 'fn'],
adjusted=True,
by = '1m',
from_date='2024-11-28 09:00',
).get_data()
print(data)
Last updated